Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 408
Filter
1.
Expert Rev Vaccines ; 23(1): 498-509, 2024.
Article in English | MEDLINE | ID: mdl-38695310

ABSTRACT

BACKGROUND: Vaccination remains the cornerstone of defense against COVID-19 globally. This study aims to assess the safety and immunogenicity profile of innovative vaccines LYB001. RESEARCH DESIGN AND METHODS: This was a randomized, double-blind, parallel-controlled trial, in 100 healthy Chinese adults (21 to 72 years old). Three doses of 30 or 60 µg of SARS-CoV-2 RBD-based VLP vaccine (LYB001), or the SARS-CoV-2 RBD-based protein subunit vaccine (ZF2001, control group) were administered with a 28-day interval. Differences in the incidence of adverse events (AEs) and indicators of humoral and cellular immunity among the different groups were measured. RESULTS: No severe adverse events were confirmed to be vaccine-related, and there was no significant difference in the rate of adverse events between the LYB001 and control group or the age subgroups (p > 0.05). The LYB001 groups had significantly higher or comparable levels of seroconversion rates, neutralization antibody, S protein-binding antibody, and cellular immunity after whole vaccination than the control group. CONCLUSIONS: Our findings support that LYB001 developed on the VLP platform is safe and well tolerated with favorable immunogenicity for fundamental vaccination in healthy adults. Therefore, further larger-scale clinical studies are warranted. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05552573).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Adult , Middle Aged , Double-Blind Method , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Male , Female , Antibodies, Viral/blood , Aged , Young Adult , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Immunogenicity, Vaccine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/adverse effects , Vaccines, Virus-Like Particle/administration & dosage , Immunity, Cellular , China , Immunity, Humoral , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Subunit/immunology , Vaccines, Subunit/adverse effects , Vaccines, Subunit/administration & dosage , East Asian People
2.
J Virol ; 98(5): e0023924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647327

ABSTRACT

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Virus Replication , Animals , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Antibodies, Viral/immunology , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Vaccination , Serogroup , Immunoglobulin G/immunology , Disease Models, Animal , Macaca fascicularis , Female , Macaca mulatta
3.
Viruses ; 16(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38675892

ABSTRACT

Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Distemper Virus, Canine , Distemper , Viral Vaccines , Animals , Distemper Virus, Canine/immunology , Dogs , Mice , Distemper/prevention & control , Distemper/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunoglobulin G/blood , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Mice, Inbred BALB C , Cytokines/metabolism , Vaccination
4.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37846984

ABSTRACT

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Animals , Humans , Antibodies, Viral , Dengue Vaccines/administration & dosage , Macaca fascicularis , Immunization, Secondary , Vaccines, Virus-Like Particle/administration & dosage
5.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233549

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
6.
Viruses ; 14(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35216022

ABSTRACT

Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Viral/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Mice , Mice, Inbred BALB C , Neuraminidase/genetics , Survival Analysis , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics
7.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Article in English | MEDLINE | ID: mdl-34983950

ABSTRACT

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Subject(s)
Adjuvants, Immunologic/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Nicotiana/metabolism , Pandemics/prevention & control , Polysorbates/adverse effects , SARS-CoV-2/immunology , Squalene/adverse effects , Vaccination/methods , Vaccines, Virus-Like Particle/adverse effects , alpha-Tocopherol/adverse effects , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Drug Combinations , Drug Compounding/methods , Immunity, Humoral , Macaca mulatta , Male , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Squalene/administration & dosage , Treatment Outcome , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage
8.
Virology ; 566: 89-97, 2022 01.
Article in English | MEDLINE | ID: mdl-34894525

ABSTRACT

Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.


Subject(s)
Antibodies, Viral/biosynthesis , Hemagglutinins, Viral/genetics , Immunoglobulin G/biosynthesis , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccines, Virus-Like Particle/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Female , Hemagglutinins, Viral/immunology , Humans , Immunoconjugates/genetics , Immunoconjugates/immunology , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza Vaccines/administration & dosage , Influenza Vaccines/biosynthesis , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Norovirus/genetics , Norovirus/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/biosynthesis , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
9.
Reprod Toxicol ; 107: 69-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34838689

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the coronavirus disease 2019 (COVID-19) has afflicted tens of millions of people in a worldwide pandemic. A recently developed recombinant Plant-Derived Virus-Like Particle Vaccine candidate for COVID-19 (CoVLP) formulated with AS03 has been shown to be well-tolerated and highly immunogenic in healthy adults. Since the target population for the vaccine includes women of childbearing potential, the objective of the study was to evaluate any untoward prenatal and postnatal effects of AS03-adjuvanted CoVLP administered intramuscularly to Sprague-Dawley female rats before cohabitation for mating (22 and 8 days prior) and during gestation (Gestation Days [GD] 6 and 19). The embryo-fetal development (EFD) cohort was subjected to cesarean on GD 21 and the pre/post-natal (PPN) cohort was allowed to naturally deliver. Effects of AS03-adjuvanted CoVLP was evaluated on pregnant rats, embryo-fetal development (EFD), during parturition, lactation and the development of the F1 offspring up to weaning Vaccination with AS03-adjuvanted CoVLP induced an antibody response in F0 females and anti-SARS-CoV-2 spike-specific maternal antibodies were detected in the offspring at the end of the gestation and lactation periods. Overall, there was no evidence of untoward effects of AS03-adjuvanted CoVLP on the fertility or reproductive performance of the vaccinated F0 females. There was no evidence of untoward effects on embryo-fetal development (including teratogenicity), or early (pre-weaning) development of the F1 offspring. These results support the acceptable safety profile of the AS03-adjuvanted CoVLP vaccine for administration to women of childbearing potential.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Embryonic Development/drug effects , Fertility/drug effects , Fetal Development/drug effects , Polysorbates/administration & dosage , Squalene/administration & dosage , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage , Animals , Animals, Newborn , Antibodies, Viral/blood , Drug Combinations , Female , Immunoglobulin G/blood , Maternal-Fetal Exchange , Pregnancy , Rats, Sprague-Dawley , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Nicotiana/genetics
10.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686605

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
11.
Immunol Lett ; 239: 77-87, 2021 11.
Article in English | MEDLINE | ID: mdl-34508790

ABSTRACT

Cancer immunotherapy is emerging as a viable treatment option for several types of cancer. Active immunotherapy aims for the induction of specific antitumor immune responses; this goal requires strategies capable of increasing the immunogenicity of tumour antigens. Parvovirus B19 virus-like particles (B19-VLPs) formed of VP2 protein had been shown to be an effective multi-neoepitope delivery system capable of inducing specific cellular responses towards coupled antigens and reducing tumour growth and lung metastases in triple negative breast cancer mouse model. These findings encouraged us to further characterise these VP2 B19-VLPs by testing their capacity to simultaneously induce cellular and humoral responses towards other tumour-associated antigens, as this had not yet been evaluated. Here, we designed and evaluated in the 4T1 breast cancer model the prophylactic and therapeutic effect of VP2 B19-VLPs decorated with cellular (P53) and humoral (MUC1) epitopes. Balb/c mice were immunised with chimaeric VLPs, vehicle, or VLPs plus adjuvant. Tumour establishment and growth, lung metastasis, and cellular and humoral immune responses were evaluated. The prophylactic administration of chimaeric VLPs without adjuvant prevented the establishment of the tumour, while by therapeutic administration, chimaeric VLPs induced smaller tumour growth and decreased the number of metastases in the lung compared to wild-type VLPs. chimaeric VLPs induced high antibody titres towards the MUC1 epitope, as well as specific cellular responses towards P53 epitopes in lymph nodes local to the tumour. Our results reinforce and extend the utility of VP2 B19-VLPs as an encouraging tumour antigen delivery system in cancer immunotherapy able to improve tumour immunity in TNBC by inducing cellular and humoral immune responses.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Parvovirus B19, Human/immunology , Triple Negative Breast Neoplasms/therapy , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Neoplasm/administration & dosage , Bacillus thuringiensis Toxins/administration & dosage , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Endotoxins/administration & dosage , Female , Hemolysin Proteins/administration & dosage , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , Insect Proteins , Mice , Receptors, Cell Surface , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Vaccines, Virus-Like Particle/administration & dosage
12.
Front Immunol ; 12: 730471, 2021.
Article in English | MEDLINE | ID: mdl-34566992

ABSTRACT

The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or 'public' antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site. As proof of concept, we deployed a library of RNA bacteriophage VLPs displaying random peptides to identify a multivalent antigen that selectively triggered germline BCRs using the human VH gene IGVH1-2*02. This VLP selectively primed IGHV1-2*02 BCRs that were present within a highly diversified germline antibody repertoire within humanized mice. Our approach thus provides methodology to generate antigens that engage specific BCR configurations of interest, in the absence of structure-based information.


Subject(s)
B-Lymphocytes/immunology , Protein Engineering , RNA Phages/immunology , Receptors, Antigen, B-Cell/immunology , Single-Domain Antibodies/immunology , Vaccines, Virus-Like Particle/immunology , Adoptive Transfer , Animals , Antibody Specificity , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/transplantation , Female , Gene Library , Humans , Ligands , Male , Mice, Transgenic , Proof of Concept Study , RNA Phages/genetics , RNA Phages/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism
13.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575893

ABSTRACT

Immunotherapy holds tremendous potential in cancer therapy, in particular, when treatment regimens are combined to achieve synergy between pathways along the cancer immunity cycle. In previous works, we demonstrated that in situ vaccination with the plant virus cowpea mosaic virus (CPMV) activates and recruits innate immune cells, therefore reprogramming the immunosuppressive tumor microenvironment toward an immune-activated state, leading to potent anti-tumor immunity in tumor mouse models and canine patients. CPMV therapy also increases the expression of checkpoint regulators on effector T cells in the tumor microenvironment, such as PD-1/PD-L1, and we demonstrated that combination with immune checkpoint therapy improves therapeutic outcomes further. In the present work, we tested the hypothesis that CPMV could be combined with anti-PD-1 peptides to replace expensive antibody therapies. Specifically, we set out to test whether a multivalent display of anti-PD-1 peptides (SNTSESF) would enhance efficacy over a combination of CPMV and soluble peptide. Efficacy of the approaches were tested using a syngeneic mouse model of intraperitoneal ovarian cancer. CPMV combination with anti-PD-1 peptides (SNTSESF) resulted in increased efficacy; however, increased potency against metastatic ovarian cancer was only observed when SNTSESF was conjugated to CPMV, and not added as a free peptide. This can be explained by the differences in the in vivo fates of the nanoparticle formulation vs. the free peptide; the larger nanoparticles are expected to exhibit prolonged tumor residence and favorable intratumoral distribution. Our study provides new design principles for plant virus-based in situ vaccination strategies.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Cancer Vaccines/immunology , Immunotherapy , Nanoparticles , Ovarian Neoplasms/therapy , Peptides/immunology , Plant Viruses , Vaccines, Virus-Like Particle/immunology , Amino Acid Sequence , Animals , Cancer Vaccines/administration & dosage , Comovirus , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Peptides/chemistry , Vaccines, Virus-Like Particle/administration & dosage , Xenograft Model Antitumor Assays
14.
Microb Cell Fact ; 20(1): 186, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34560881

ABSTRACT

BACKGROUND: Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS: This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS: Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.


Subject(s)
Antibodies, Neutralizing/blood , Leishmania/genetics , Leishmania/virology , Norovirus/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology , Animals , Immunization , Immunoglobulin G/blood , Leishmania/immunology , Male , Mice , Mice, Inbred BALB C , Norovirus/genetics , Vaccine Development , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
15.
Virology ; 562: 197-208, 2021 10.
Article in English | MEDLINE | ID: mdl-34375782

ABSTRACT

Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009. Intramuscular vaccination of mice with NA2 VLPs induced high anti-NA serum IgG levels capable of inhibiting NA activity. NA2 VLP vaccination protected against mortality in a lethal A/Hong Kong/1/1968 (H3N2) virus challenge model, but not against lethal challenge with A/California/04/2009 (H1N1) virus. However, bivalent vaccination with NA1 and NA2 VLPs demonstrated no antigenic competition in anti-NA IgG responses and protected against lethal challenge with H1N1 and H3N2 viruses. Here we demonstrate that vaccination with NA VLPs is protective against influenza challenge and supports focusing on anti-NA responses in the development of future vaccination strategies.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Vaccination/methods , Viral Proteins/immunology , Animals , Disease Models, Animal , Dose-Response Relationship, Immunologic , Immunity, Heterologous , Immunoglobulin G/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Injections, Intramuscular , Mice , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology
16.
Viruses ; 13(8)2021 08 09.
Article in English | MEDLINE | ID: mdl-34452436

ABSTRACT

Rabbit hepatitis E virus (HEV) is a novel HEV belonging to genotype 3 (HEV-3) in the Orthohepevirus A species of the genus Hepevirus, family Hepeviridae. Rabbit HEV was originally isolated from rabbits and found to cause zoonotic infection. Although rabbit HEV can be successfully grown in culture with several cell lines, including the human carcinoma cell line PLC/PRF/5, it is difficult to obtain the large amounts of viral antigen required for diagnosis and vaccine development. In this study, we expressed N-terminal 13 and 111 aa-truncated rabbit HEV ORF2 proteins using recombinant baculoviruses and obtained two types of virus-like particles (VLPs), RnVLPs and RsVLPs with ~35 and 24 nm diameter, respectively. Anti-rabbit HEV IgG antibodies were induced in high titer by immunizing rabbits with RnVLPs or RsVLPs. The antibody secretion in the serum persisted more than three years. RsVLPs showed stronger antigenic cross-reactivity against HEV-1, HEV-3 and HEV-4 than rat HEV. Moreover, anti-RsVLPs antibodies neutralized not only the cognate virus but also HEV-1, HEV-3 and HEV-4 ex vivo, indicating that rabbit HEV had the same serotype as human HEVs. In contrast, the antibody did not block rat HEV infection, demonstrating that rat HEV belonged to a different serotype. Animal experiments indicated that immunization with either RnVLPs or RsVLPs completely protected the rabbits from challenge by rabbit HEV, suggesting that the VLPs are candidates for rabbit HEV vaccine development.


Subject(s)
Antibodies, Viral/blood , Baculoviridae/genetics , Hepatitis E virus/immunology , Hepatitis E/prevention & control , Immunogenicity, Vaccine , Vaccines, Virus-Like Particle/immunology , Viral Proteins/immunology , Animals , Female , Hepatitis E/immunology , Hepatitis E virus/genetics , Immunoglobulin G/blood , Rabbits , Vaccine Development , Vaccines, Virus-Like Particle/administration & dosage , Viral Proteins/administration & dosage , Viral Proteins/genetics
17.
Viruses ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200586

ABSTRACT

Three prophylactic vaccines are approved to protect against HPV infections. These vaccines are highly immunogenic. The most recent HPV vaccine, Gardasil-9, protects against HPV types associated with ~90% of cervical cancer (worldwide). Thus, ~10% of HPV-associated cancers are not protected by Gardasil-9. Although this is not a large percentage overall, the HPV types associated with 10% of cervical cancer not protected by the current vaccine are significantly important, especially in HIV/AIDS patients who are infected with multiple HPV types. To broaden the spectrum of protection against HPV infections, we developed mixed MS2-L2 VLPs (MS2-31L2/16L2 VLPs and MS2-consL2 (69-86) VLPs) in a previous study. Immunization with the VLPs neutralized/protected mice against infection with eleven high-risk HPV types associated with ~95% of cervical cancer and against one low-risk HPV type associated with ~36% of genital warts & up to 32% of recurrent respiratory papillomatosis. Here, we report that the mixed MS2-L2 VLPs can protect mice from three additional HPV types: HPV51, which is associated with ~0.8% of cervical cancer; HPV6, which is associated with up to 60% of genital warts; HPV5, which is associated with skin cancers in patients with epidermodysplasia verruciformis (EV). Overall, mixed MS2-L2 VLPs can protect against twelve HPV types associated with ~95.8% of cervical cancers and against two HPV types associated with ~90% of genital warts and >90% recurrent respiratory papillomatosis. Additionally, the VLPs protect against one of two HPV types associated with ~90% of HPV-associated skin cancers in patients with EV. More importantly, we observed that mixed MS2-L2 VLPs elicit protective antibodies that last over 9 months. Furthermore, a spray-freeze-dried formulation of the VLPs is stable, immunogenic, and protective at room temperature and 37 °C.


Subject(s)
Antibodies, Viral/blood , Bacteriophages/immunology , Papillomaviridae/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Vaccines, Virus-Like Particle/immunology , Animals , Condylomata Acuminata/prevention & control , Cross Protection/immunology , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Papillomaviridae/classification , Papillomaviridae/pathogenicity , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/prevention & control , Vaccines, Virus-Like Particle/administration & dosage
18.
Front Immunol ; 12: 678318, 2021.
Article in English | MEDLINE | ID: mdl-34248960

ABSTRACT

Cervical cancer caused by human papillomavirus (HPV) infections is the fourth most common cancer in women worldwide. Current prophylactic HPV vaccines have achieved promising success in preventing HPV infection. However, still 570,000 new cases were reported in 2018. The current primary treatment for the patient with cervical cancer is either surgery or chemoradiotherapy. Cervical cancer still lacks standard medical therapy. HPV18 induced cervical cancer has the worst prognosis and high mortality compared to other HPV infections. The development of HPV18 related with cervical malignancy requires the persistent infection of cervical-vaginal epithelium by HPV18 subtype, which can take years to transform the epithelium. This period of repeated infection provides a window for therapeutic intervention. Neutralizing antibodies formulated as topical agents that inhibit HPV18 infection should reduce the chance of cervical malignancy. We previously demonstrated that potent neutralizing anti-sera against HPV18 infection were induced by HPV18 viral like particle (VLP) generated in mammalian cells. We, therefore, isolated two potent neutralizing antibodies, 2A12 and 8H4, from over 3,810 hybridomas prepared from mice immunized with HPV18 VLP. 2A12 and 8H4 exhibited excellent potency, with 50% virus-inhibitory concentrations (IC50) of 0.4 and 0.9 ng/ml, respectively. Furthermore, 2A12 and 8H4 recognized distinct and non-overlapping quaternary epitopes and bound specifically with HPV18. Humanized 2A12 (Hu2A12) retained comparable neutralizing activity against HPV18 infection in various acidic pH settings and in hydrogel formulation with IC50 values of 0.04 to 0.77 ng/ml, indicating that Hu2A12 will be a promising candidate for clinical development as a topical vaginal biopharmaceutical agent against HPV18 infection.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Human papillomavirus 18 , Papillomavirus Infections/complications , Papillomavirus Infections/immunology , Uterine Cervical Neoplasms/etiology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Disease Management , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Female , Human papillomavirus 18/physiology , Humans , Immunization , Mice , Molecular Targeted Therapy , Neutralization Tests , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Xenograft Model Antitumor Assays
19.
Commun Biol ; 4(1): 597, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011948

ABSTRACT

The COVID-19 pandemic continues to wreak havoc as worldwide SARS-CoV-2 infection, hospitalization, and death rates climb unabated. Effective vaccines remain the most promising approach to counter SARS-CoV-2. Yet, while promising results are emerging from COVID-19 vaccine trials, the need for multiple doses and the challenges associated with the widespread distribution and administration of vaccines remain concerns. Here, we engineered the coat protein of the MS2 bacteriophage and generated nanoparticles displaying multiple copies of the SARS-CoV-2 spike (S) protein. The use of these nanoparticles as vaccines generated high neutralizing antibody titers and protected Syrian hamsters from a challenge with SARS-CoV-2 after a single immunization with no infectious virus detected in the lungs. This nanoparticle-based vaccine platform thus provides protection after a single immunization and may be broadly applicable for protecting against SARS-CoV-2 and future pathogens with pandemic potential.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Drug Delivery Systems , Female , Humans , Immunization/methods , Levivirus/genetics , Levivirus/immunology , Mesocricetus , Microscopy, Electron, Transmission , Models, Animal , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Nanotechnology , Pandemics/prevention & control , Protein Engineering , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/genetics , Vaccines, Combined/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology
20.
Sci Rep ; 11(1): 10792, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031479

ABSTRACT

An effective vaccine would be a valuable tool for malaria control and elimination; however, the leading malaria vaccine in development, RTS,S/AS01, provided only partial protection in a Phase 3 trial. R21 is a next-generation RTS,S-like vaccine. We have previously shown in mice that R21 administered in Matrix-M is highly immunogenic, able to elicit complete protection against sporozoite challenge, and can be successfully administered with TRAP based viral-vectors resulting in enhanced protection. In this study, we developed a novel, GMP-compatible purification process for R21, and evaluated the immunogenicity and protective efficacy of ultra-low doses of both R21 and RTS,S when formulated in AS01. We demonstrated that both vaccines are highly immunogenic and also elicit comparable high levels of protection against transgenic parasites in BALB/c mice. By lowering the vaccine dose there was a trend for increased immunogenicity and sterile protection, with the highest dose vaccine groups achieving the lowest efficacy (50% sterile protection). We also evaluated the ability to combine RTS,S/AS01 with TRAP based viral-vectors and observed concurrent induction of immune responses to both antigens with minimal interference when mixing the vaccines prior to administration. These studies suggest that R21 or RTS,S could be combined with viral-vectors for a multi-component vaccination approach and indicate that low dose vaccination should be fully explored in humans to maximize potential efficacy.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/administration & dosage , Malaria/prevention & control , Vaccines, Synthetic/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Synergism , Female , Humans , Immunization , Malaria/immunology , Malaria Vaccines/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...